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J. Phys. A: Math. Gen. 15 (1982) 2785-2799. Printed in Great Britain 

Collective rotations of asymmetrically deformed many-body 
systems 

Lucas F Lathouwerst and Erik Deumens 
Dienst Teoretische en Wiskundige Natuurkunde, University of Antwerp (RUCA), Belgium 

Received 30 December 1981 

Abstract. The angular momentum projection technique is worked out for systems with 
an intrinsic asymmetric deformation. These include asymmetric top molecules and triaxial 
nuclei. A parametrisation of the rotation group is introduced which allows an approximate 
but analytical evaluation of angular momentum projected matrix elements. Via symmetric 
orthonormalisation a quantal definition of the moments of inertia is obtained. 

1. Introduction 

Many-body systems such as nuclei and molecules display energy level patterns that 
strongly resemble the spectra of rigid rotors. It is common to explain this feature as 
being due to the collective rotation of the constituents (the nucleons in the nucleus, 
the electrons 2nd nuclei in the molecule). Thus a quantitative explanation is obtained 
by identifying the system with a rigid rotor having internal degrees of freedom to 
account for the non-rotational aspects of the spectra. Models constructed along these 
lines are the Bohr-Mottelson (1975) approach for nuclei and the (crude) Born- 
Oppenheimer (1927) approximation for molecules. The main criticism against these 
models is that in their primitive form, in which they are usually presented in textbooks, 
they are not derived from the full microscopic Hamiltonian of the many-body system. 
This situation can be remedied in two ways: by transforming the Hamiltonian to a 
rotating frame of reference or by using angular momentum projection techniques. 
Both these alternatives make sure that rotational invariance is properly accounted 
for; however, they show some marked differences both from a theoretical and a 
practical point of view (Lathouwers 1980a, b). In using either one of these methods 
one has to distinguish between spherically symmetric, axially symmetric and asym- 
metric cases according to whether the spectra are reminiscent of those of the corres- 
ponding rotor types. Whereas the frame transformation method has been worked out 
for all three situations, the general projection theory is not available for asymmetrically 
deformed systems. The presentation of such a scheme is the purpose of this paper. 

Approximate angular momentum projection for axially symmetric nuclei was 
developed by Peierls and Yoccoz (1957) within the framework of the generator 
coordinate (GC) method (Griffin and Wheeler 1957). This approach was carried over 
to the GC theory of diatomic molecules (Lathouwers 1978, 1980a, b, Lathouwers and 
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Van Leuven 1982). In both cases the starting point is a strongly deformed intrinsic 
state possessing axial symmetry. In order to generalise the above schemes to asym- 
metric situations, we will drop all restrictions on the choice of the intrinsic state except 
those of strong deformation in all directions and reality. Mathematically this can be 
expressed as 

(1)  {xI%(w, u)/ ,y)  = (x/e-i"J'"/,y) = a sharply peaked function of w 

where %(U, U )  is the angle-axis form of a rotation operator, i.e. J is the total angular 
momentum of the system, w the rotation angle and U a unit vector. Equation (1) 
states that the intrinsic function x(x)  is so deformed that any rotation, specified by a 
rotation angle w and a unit vector U, will transform it into a function having a small 
overlap with the original. In other words, the scalar product of x(x)  and %(w, u)x(x) 
is a rapidly decreasing function of w. It is common to supplement (1) with a similar 
assumption for matrix elements obtained by inserting the Hamiltonian. Therefore as 
a second consequence of strong deformation we will assume that 

(,yIH%(w, ~ ) /x ) / (x [%(w,  u)lx) = a slowly varying function of w. (2) 

Together with the convention that x(x)  is a real function, (1) and (2) constitute the 
basic assumptions of this paper. We will show that this includes all asymmetric top 
molecules if the molecular intrinsic functions are constructed as products of electronic 
states and strongly localised nuclear wavepackets. Triaxial nuclei in the mass region 
A = 135 and A = 190 also fall into this category. In this case the intrinsic state may 
be chosen as the result of an unrestricted Hartree-Fock or Hartree-Fock-Bogoliubov 
calculation. 

We proceed as follows. Section 2 gives a summary of the angular momentum 
projection procedure and yields the basic matrix equation for the rotational energies. 
It is observed that the representation of the rotation operators in terms of Euler 
angles is not suited for the approximate evaluation of the projected overlap and 
Hamiltonian matrices. Section 3 therefore presents an alternative parametrisation in 
which infinitesimal rotations are easily characterised while the representations of the 
rotation group still keep a simple form. Equipped with this new parametrisation, 
the Gaussian overlap and quadratic approximations are established in § 4. Here an 
important tensor, the angular momentum fluctuation tensor, is introduced. In its most 
general form it reads 

where the Jk are the components of the angular momentum vector. The integration 
over the rotation group is considerably simplified if the intrinsic state is oriented such 
as to diagonalise Fkl. The evaluation of the projected overlap and Hamiltonian matrices 
to lowest order is done in P 5 .  These results do not yet allow a clear-cut physical 
interpretation, due to the resulting non-diagonal metric. For this purpose we make 
use of symmetric orthonormalisation which reduces the generalised eigenvalue prob- 
lem to a single matrix diagonalisation. The Hamiltonian matrix after orthonormalisa- 
tion then has the desired form, i.e. depends upon the total angular momentum and 
azimuthal quantum numbers in exactly the same way as the matrix of a rigid rotor 
Hamiltonian in a basis of Wigner D functions. A quantal definition of the three 
moments of inertia for the asymmetrically deformed system is then possible. These 
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numbers turn out to be the eigenvalues of a symmetric inertia tensor which, in general, 
is not diagonal. The spectrum at the lowest level of approximation is that of an 
effective rigid rotor. 

2. Angular momentum projections 

Deformed states, such as those described in the introduction, are not necessarily 
eigenstates of the pair of operators J2 and J,. This is a consequence of the fact that 
they result from variational principles including functions out of a subspace of the 
system’s full Hilbert space. The ~ ( x )  therefore define specific directions in space. 
However, it is clear that all rotated states %!((w, u ) x ( x )  have the same energy expecta- 
tion value. This degeneracy can be removed by considering the trial states 

W )  = J d R F ( n ) 9 ( f i ) x b ) ,  (4) 

J d R =  Jo2Tdp J:sin 8 d8  Jo2Tdy, ~ ( 0 )  = e-Wz e-it7J’J’ e-iYJz 7 ( 5 )  

where we have introduced the common expression (see e.g. Messiah 1960) for the 
rotation operators in terms of three Euler angles R =_ (cp, 6, y ) .  The variationally optimal 
functions F ( n )  satisfy the integral equation 

[ H ( n ,  af) -EA(R, n‘)]F(n’) dR’ = 0,  (6) 

H ( R ,  a’) = ( x l ~ + ( w H ~ ( n ’ ) i x > ,  A ( 0 ,  a‘) = ( x / ~ + ( R ) ~ ( ” .  (7) 

This is a special case of the Wheeler equation in the generator coordinate theory 
(Griffin and Wheeler 1957) if one considers the Euler angles as GC. When the 
parameters of a continuous group, here the rotation group, are used as GC, group 
representation theory allows a partial solution of the Wheeler integral equation. 
Indeed, if we expand the F ( n )  in terms of Wigner D functions 

and make use of the well known properties of these so-called ‘rotation matrices’, the 
Wheeler equation (6) is reduced to a set of matrix equations, one for each total angular 
momentum value J: 

The appearance of the factor (2J  + l)/S.rr2 is explained below. Each of these equations 
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yields a set of energy levels E: with 7 = 1 , 2 , .  . . , 2 J +  1. These can be interpreted 
as rotational states since they are generated by diagonalising the Hamiltonian in a 
basis set {iB(R)x(x)} of rotated intrinsic states. 

The procedure just described within the framework of the GC method is equivalent 
to what is known as the angular momentum projection technique. Angular momentum 
projectors are integral operators of the form 

They are continuous analogues of the projection operator for finite groups, i.e. the 
sums over the group of the group elements with coefficients given by the irreducible 
representations. The factor 2 J  + 1 refers to the dimension of the irreducible yep- 
resentations while 87' equals 'the number of group elements'. The action of P'M, 
on an arbitrary state ~ ( x )  produces an eigenfunction of J 2  and J,  with quantum 
numbers J and M respectively. The connection between the angular momentum 
projectors and the GC type approach becomes clear if one substitutes the expanded 
form (8) of F ( R )  into the integral (6) to obtain (observe that the eigenvectors of the 
secular equations (10) are independent of M )  

This shows that the V ( x )  are sums of J 2  and J, eigenfunctions q J M ( x ) ,  each of which 
is a variationally determined superposition of angular momentum projected states 
PLK,y(x) .  Reversing the arguments, one can say that the original intrinsic function, 
being strongly deformed, has a small uncertainty in orientation and hence, according 
to Heisenberg's principle, contains a large spread of angular momentum values. The 
state ~ ( x )  can therefore be considered as a wavepacket of angular momentum eigen- 
functions whose components are sorted out by the projection technique. The con- 
sistency of (10)-(12) with (14)-(15) is easily checked using the properties 

(PLK)+ = PIKM, [ H  P L K I  = 0 ,  PIKMPLL = PJKL, (16) 

which follow directly from the definition (13). For details on the use of the projection 
technique in axially symmetric cases, where considerable simplifications arise, we refer 
to Kelemen and Dreizler (1976). Here we will deal only with totally asymmetric 
situations. Small deviations from axial symmetry have been discussed by Villars and 
Rogerson (1971). 

The main goal of this paper is to investigate the structure of the spectra resulting 
from secular equations of the type (10) if the starting point is a strongly deformed 
intrinsic state. We therefore need to know how the projected matrix elements (11) 
and (12) depend upon the quantum numbers J, K and L. In view of the consequences 
of strong deformation, equations (1) and (2), we expect the contributions from 
infinitesimal rotations to be most important in the calculation of A i L  and HLL. Thus 
we have to use a parametrisation of the rotation group which allows us easily to 
identify small rotations. In addition, to perform the integrations in (11) and (12) 
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analytically the associated irreducible representations must be known explicitly and 
preferably be of a simple form. In the next section we will introduce a parametrisation 
of the rotation group that meets this dual requirement. 

3. Parametrisations of the rotation group 

We have already used two representations of rotation operators. The first one involved 
a single rotation angle w and a rotation axis U 

3 ( w ,  U) = (17) 

It is known as the angle-axis form of rotation operators. Observe that llull= 1 and that 
the correspondence is not unique since B ( w ,  U )  = 3 ( - w ,  -U). The second one is 
commonly used in the projection technique and employs the Euler parametrisation 
( 5 ) .  The connection between the respective parameters is well known (Casimir 1931)T 

(18) 

where E = (cp + y) /2  and S = (cp - y)/2 are the sum and difference angles. For our 
purpose, i.e., the approximate but analytical evaluation of the projected matrix 
elements H i L  and A i L ,  we need a parametrisation which on the one hand allows a 
location of infinitesimal rotations and on the other hand yields a simple functional 
form of the group representations. The first form (17) has the first property, since 
infinitesimal rotations clearlj correspond to infinitesimal rotation angles w.  However, 
the expression of Wigner 13 functions in terms of w and the spherical angles of U is 
complicated (Kerman and Onishi 1977). Alternatively, .the Wigner 13-functions 
emerge in a natural way from the Euler representation, hence the second requirement 
is then fulfilled. However, it is easy to convince oneself that the infinitesimal angles 
4p, 8 and y are not the only ones which generate infinitesimal rotations. Therefore 
neither of the two forms considered so far is suitable for our needs and a third one 
is called for. 

Fortunately it is relatively easy to discover which parametrisation has the two 
qualities mentioned above. Indeed, from the set of equations (18) it follows that 
infinitesimal angles w necessarily correspond to infinitesimal values of 6 and E .  The 
difference angle 6, however, is arbitrary in this respect. From the Euler form one can 
then derive the rotation operator, expressed in terms of 8, E and S ,  in the following way: 

1 1 1 1 U, sin 2 w = sin S sin 28, U, sin jlw = cos S sin 58, 

1 1 1 1 uz sin 20 = sin E cos 38, COS w = COS E COS 28, 

e - i ~ J ,  e-itJJ, e-iyJz - - i d z  e-iSJz e-i6JY e-iSJz - e  
%((s, e,) e-'BJ> %+(a, e,) 

= e-iEJz exp [-ie(J, cos s - J ,  sin s)] e-iEJ=. (19) 

For the group representations, a simple substitution of cp and y in terms of E and 6 
immediately gives the expression for the rotation matrices, 

(20) e - i K ~  d k L ( 8 )  = e-i(K+L)E d i L ( @ )  e-i(K-L)S 

+ It should be remarked that Casimir's (1931) definition of the Euler angles is different from that of Messiah 
(1960). One has cpc = cpM + a/2, Bc = BM and yc = yM - a/2. 
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Although the rotation operator derived in (19) is slightly more complicated than the 
Euler form, and considerably more complex than the angle-axis form, it satisfies our 
present needs. Indeed, we can identify infinitesimal rotations with infinitesimal values 
of the two angles E and 8 (not possible in Euler form), while the Wigner D functions 
are as simple as the common expressions (complications arise at this point with the 
angle-axis form). 

The situation becomes even more clear if we consider the transformation from 
the Euler parametrisation to the new one in the cp, y or E ,  S plane. The situation is 
illustrated in figure 1. 

I 

Figure 1. Locations of infinitesimal rotations in the (cp, y )  and ( E ,  8 )  planes. 

The integration domain originally consists of the square 0 s cp s 27r, 0 s y s 27r. 
Within this domain the infinitesimal rotations are located in the lower left and upper 
right corners and along the diagonal from the upper left to the lower right corner. 
Thus, the regions of interest do not form a connected subset of the square which 
complicates the integration. However, since the integrand is a periodic function of cp 
and y with period 27, it is allowed to translate portions of the original square both 
vertically and horizontally over a distance 27r. A little jig-saw puzzle on figure 1 then 
shows that the integration over the square is equivalent to that over the rectangle 
-7r/2 s E s + 1~12 ,  -IT s S s +7r, i.e. 

where the factor 2 arises from the Jacobian of the transformation. 

denote rotation operators by 
Because of the advantages of the ( E ,  8,s) parametrisation, we will from now on 

%(e, B, S )  = e-'"' exp [-ie(J, cos s -J ,  sin s ) ]  e-'"'.. (22) 
Confusion with the previous notation for the Euler form will be avoided by always 
specifying the arguments. The use of the new parametrisation should also not be 
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confused with the way Euler angles actually parametrise the intrinsic states. The use 
of Euler angles as GC is based on defining a GC intrinsic state as x(xIn)=%!((n)x(x), 
whereas the ( E ,  8,s) parametrisation is introduced at the level of the secular equations 
(lo), resulting from a partial solution of the Wheeler equation (6). 

4. Gaussian overlap and quadratic approximations 

The purpose of this section is to provide simple, yet general, approximations for the 
expectation values appearing in the angular momentum projected matrix elements 
(11) and (12). First (19), (20) and (21) may be used to rewrite the definition of A i L  
.and H i L  as follows: 

The functions A(&, 8,s) and H ( E ,  8, S) are given in terms of the rotation operators in 
the form (22) by 

A(&, 8,s) = ( X I W E ,  8, ~ I X ) ,  W E ,  e, 8 )  = ( x I H . ( E ,  e, W. (25) 

For strongly deformed states ~ ( x )  these functions behave like generator coordinate 
kernels, corresponding to intrinsic states with a pronounced dependence on the GC. 

Hence, the same techniques will apply (Griffin and Wheeler 1957). 
The Gaussian overlap approximation (GOA) is a celebrated procedure in GC 

methods. It assumes that the overlap between neighbouring intrinsic states is essen- 
tially a Gaussian in the difference of the GC. A similar situation arises here since we 
expect the overlap function 4(&, 8,s) to be small for all but the infinitesimal rotations. 
Hence we assume the form 

A(&, 8, S)=exp [ - u ( S ) E ~ - ~ ~ ( S ) E ~ - C ( S ) ~ ~ ]  (26) 
consistent with the fact that infinitesimal rotations correspond to small angles 8 and 
E .  Since the difference angle S is arbitrary the damping coefficients in the GOA (26) 
are in general S dependent. Direct identifications of the quadratic terms in the GOA 
with those obtained expanding the exponentials in the rotation operator yield the 
expressions 

where we have adopted the notation ( J )  = (xlJlx) for expectation values of operators 
with respect to the intrinsic state. Notice that the scale factor a corresponding to 
rotations around the z axis is independent of 6. If x(x)  is real, as was assumed from 
the start, no linear terms appear due to time reversibility which implies that (Jk) = 0. 

One sees from (27) that the rate at which the overlap function goes to zero is 
measured by the components of the angular momentum fluctuation tensor, which in 
the time reversible case reduces to 

& =  (JJI) = (XIJJIIX). (28) 
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The numerical values of the Fkl depend upon the orientation of the intrinsic function. 
Indeed, if one computes these numbers for the rotated state % ( E O ,  80, S O ) X ( X ) ,  one 
obtains 

(29) 

where U(EO, 80, SO) is the unitary matrix specifying the effect of % ! ( E ~ ,  eo, S o )  in 
coordinate space. This implies that the orientation of ~ ( x )  is optional and may be 
chosen in such a way as to simplify the theory. It will turn out to be computationally 
favourable to orient x ( x )  such that the angular momentum fluctuation tensor is 
diagonal. With this convention the GOA reduces to 

= u + ( c O ,  eo, s ~ ) F ~ ~  u ( s O ,  eo, 60) 

A(&, 8, S)=exp(-ua2)exp[-c(S)8’], 

c (6) = $[(.I: ) + ( J ;  ) - cos 2S((JZ ) - (J; ))I, 
which is a factorised expression in the angles, E and 8, referring to infinitesimal 
rotations. 

The actual values of U and c ( S )  for molecular and nuclear many-body systems are 
determined by the expectation values ( J ;  ). For strongly deformed nuclei Villars 
(1966) indicates that lo2 is a reasonable value. In the molecular case the strong 
localisation of nuclei in the intrinsic state implies values of the order lo4 for the (5:) 
(Lathouwers and Van Leuven 1982). Thus in both cases the GOA will provide a 
natural cut-off radius for the 8 and E integrals. 

Complementary to the GOA is the so-called quadratic approximation (QA). It is 
based on the assumption that the behaviour of the Hamiltonian kernel in a GC 

procedure is very similar to that of the overlap kernel. In that case their ratio will 
be a slowly varying function of the GC which can be expanded in a Taylor series 
truncated at second order. Translated into the present terminology, this implies the 
approximation of the quotient H ( E ,  8, ~ ) / A ( E ,  8,s) by a second-order polynomial in 
E and 8, i.e. 

H ( E ,  8, S ) / A ( E ,  6 , S )  E ( O ) - ~ [ A ( S ) E ’ + ~ B ( S ) ~ E  +C(S)8’] (32) 

where the linear terms are again absent due to time reversibility. Straightforward 
calculation gives for the coefficients in the QA the results 

E(O) = ( H ) ,  (33) 

A = 4([H - E(O)IJz ), (34) 

B(S)  = 2(([H -E(0)IJ,Jz) cos S - ([H -E(0)IJJy) sin S), (35) 
C(S)=([H-E(O)]JZ)sin’ 8 + ( [ H - E ( 0 ) ] J ~ ) c o s 2  S-([H-E(0)IJJy)sin 28. (36) 

As in the GOA the coefficient of E’ is S independent. From these formulae it is clear 
that a second tensor will be of importance. It is obtained from the angular momentum 
fluctuation tensor by inserting the Hamiltonian devoid of the intrinsic energy E(O), 
i.e. 

K k i  = ([H-E(O)IJkJI). (37) 

If the orientation of ~ ( x )  is chosen such that Fki is diagonal, there is no reason to 
expect that Kkl will share this property. Hence, there is in general no decoupling in 
the E and 8 angles in the QA. . 
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At this point it might be worthwhile to clarify the statement ‘the intrinsic state 
defines a specific direction in space’ and its relation to the angular momentum 
fluctuation tensor. In general one will start with an intrinsic state, defined relative to 
a space-fixed reference system, which does not yield a diagonal angular momentum 
fluctuation tensor. In fact, each of the rotated states %(so, eo, S o ) x ( x )  produces 
different values for the elements Fkl according to (29).  Thus the numerical values of 
the angular momentum fluctuation tensor can be considered as the signatures of the 
directional properties of the intrinsic state. Above we have adopted the convention 
that, as a first step in the application of the theory, one should diagonalise the matrix 
(XIJkJIIx) associated with the original intrinsic state. As a result of this computation 
one can specify three angles eo, eo and So and reorient the intrinsic state by putting 
x o ( x )  = % ( E O ,  80, S O ) X ( X ) .  From this point onwards all expectation values are taken 
with respect to x 0 ( x ) .  Therefore, the theory can be developed further using the 
simplified form of the overlap kernel which results from the fact that the angular 
momentum fluctuation tensor associated with x o ( x )  is diagonal. This step in the 
application of the present scheme is analogous to the explicit definition of body-fixed 
axes in terms of particle coordinates in the frame transformation theory. 

5. Overlap and Hamiltonian matrices 

In order to study energy level patterns arising from secular equations like ( l o ) ,  we 
need to know the dependence of the matrix elements A i L  and H i L  upon the quantum 
numbers J, K and L.  This necessitates an analytical evaluation of the three- 
dimensional integrals (23)  and (24) .  Two factors simplify this task. The first one is 
the diagonal form of the angular momentum fluctuation tensor by appropriately 
choosing the orientation of the intrinsic state. This leads to decoupled E and 8 integrals. 
Secondly, the scale factors a and c ( S )  cause the integrands to be essentially zero if 
E’ and 8’ are much larger than l / ( J ; )  (for nuclei and molecules this means much 
larger than lo-’ or l op4) .  Therefore we can replace the iqtegrands, excluding the 
Gaussians, by their asymptotic values for small E and 8, at the same time extending 
the integration ranges to -CO, + CO and 0, +CO, respectively. We take into account 
the asymptotic form near 8 = 0 of the &=(e), i.e. 

dJKK(8) - 1 - a 8 2 [ J ( J + 1 ) - K 2 ] + .  . . , 
e+o 

for K > L (see e.g. Verhaar 1964). These are good approximations provided the total 
angular momentum is not too large. Indeed, the d iL(8 )  show an increasing number 
of oscillations if one goes to larger and larger J values. Requiring the first node to 
be well outside the cut-off range provided by the GOA yields a maximum value of 

2 1/2  J = ( J k )  . This implies that the asymptotic forms (38)  can safely be used up to 
J = 10 or J = 100 for nuclei and molecules respectively. 

Assuming (38)  to be valid, all integrations in (23) and (24)  can be performed 
analytically provided one starts with the S integration. This is not only convenient 
but also necessary. Indeed, the integrals over 6 have to be done exactly, in view of 
the fact that this angle may take on all values in the range -r, +r, still yielding 
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infinitesimal rotations. Some details of the calculation and the required definite 
integrals are given in the appendix. We present here the results for the overlap and 
Hamiltonian matrices to lowest order in l/(J;), i.e., the formulae will give accuracy 
to 2 or 4 decimal places depending on whether one is dealing with nuclei or molecules. 

The diagonal and off-diagonal elements of the overlap matrix, to lowest order in 
l/(J;), are given by 

for K > L and K - L even. The matrix elements corresponding to odd K - L values 
are zero, such that a decoupling of odd and even K occurs in the overlap matrix. The 
above expressions have a completely specified dependence upon the quantum numbers 
J,  K and L, and further contain the eigenvalues of the angular momentum fluctuation 
tensor, i.e. the (JE). Clearly the deviation from orthonormality decreases with increas- 
ing values of the ( J ; )  but also with increasing K - L.  These features are due to the 
combined effect of the GOA and the asymptotic behaviour of the d iL(B)  which cause 
the overlap matrix to have a peaked structure along the diagonal. 

Combination of the GOA and QA gives an approximate form of the Hamiltonian 
matrix HiLL.  A computationally convenient notation is 

H i =  E(O)AiL-$(AfKL+2BJKL +C&) (41) 
where the various contributions AiL, B’K, and C i L  are obtained by integrating the 
alphabetically corresponding term in the QA (32) with the reduced GOA (30). The 
calculation is trivial to perform, but does not yield simple and physically meaningful 
expressions for the H i L  even if only the lowest-order terms in l/(J;> are retained. 
The purpose of the next section is to clarify this situation. 

However, by grouping the lowest-order contributions to the diagonal elements of 
the Hamiltonian matrix, it is already apparent that the rotational energies can best 
be measured relative to a ‘zero-point energy’ given by 

The contribution AE is the analogue of the energy gain obtained in GC descriptions 
of collective vibrations (Griffin 1957, Brink and Weiguny 1968). In general, one can 
say that a lowering of the intrinsic energy is obtained by virtue of the variational 
treatment of the collective motion considered. Clearly AE lowers E(0)  if the energy 
of the functions Jkx is higher than the intrinsic energy. This is a plausible subsidiary 
condition on the intrinsic wavefunction. An analogous validity criterion appears in 
the above-mentioned GC applications. 

6. Energy spectra and moments of inertia 

A physical interpretation of the approximate projection procedure becomes possible 
if the secular equation (10) is put in a form which closely resembles the matrix equation 
resulting from diagonalisation of a rigid rotor Hamiltonian in a basis of Wigner 
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D-functions. These functions are orthonormal, so that the failure at the stage we 
arrived at in 0 5 is probably due to orthonormality deviations in the overlap matrix. 
This is a common situation in GC methods where physical interpretation is attempted 
only after transformation to an orthonormal representation. We refer here to the 
so-called ‘narrowing procedure’ introduced by Griffin and Wheeler (1957). The 
analogue in the present case is the symmetric orthonormalisation of the rotational 
eigenvalue problem, i.e. (10) is replaced by 

1 R’K, d i  = EJ,d&, 

R = A-’’~(H - E ~ A ) A - ’ / ~ ,  d = A”2 c, (44) 

(43) 
L 

where A’’2 and A-”’ are the square root and inverse square root of the overlap 
matrix. We have subtracted the zero-point energy so as to obtain ‘pure rotational 
terms’. The fact that symmetric orthonormalisation appears as the key to physical 
interpretation is not surprising. Indeed this technique has turned up in a variety of 
interesting problems (Eckart 1935, Lowdin 1370, Louck and Galbraith 1976, 
Jargensen 1978). In general, A-’’’ has to be computed numerically. However, since 
the non-orthonormality is small in the case of strong deformation, we can put 

A = l - S  with S i L < <  1 (45) 
and use the well known series expansion (Lowdin 1970) 

A-”2=1+$S+$S2+. .  . 
At the level of approximation we are working at we may truncate (46) after the second 
term and obtain the transformed Hamiltonian matrix in the form 

R = ( l+$S)H( l+$S)  = H+$[H,S]+. (47) 

The previous, non-interpretable results for the overlap and Hamiltonian matrix can 
now be combined to evaluate the symmetrically orthonormalised Hamiltonian matrix 
elements RiL.  Due to a cancellation of terms, the final results are considerably more 
simple than the ones before orthonormalisation. We obtain to lowest order 

x [ (J+K)(J+K - 1)(J-K +2)(J-K + I)]’/*. (50) 

These expressions are also obtained if one sets up the matrix of a rigid rotor 
Hamiltonian in a basis of Wigner D functions. More precisely, the diagonalisation 
of the matrix R is equivalent to solving the eigenvalue problem for the operator 
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Here the $k are arbitrary, body-fixed angular momentum components and 0-' 
plays the role of a reciprocal inertia tensor. We can therefore conclude that the 
spectra, resulting from angular momentum projection as described in the previous 
sections, are rigid rotor energy level patterns. Alternatively, one may look upon 2trot0, 
as an effective Hamiltonian. Indeed, (51) and (52) demonstrate that the many-body 
system described by ~ ( x )  behaves effectively as a rotating rigid body whose moments 
of inertia are the eigenvalues of the inertia tensor 

Qki = FkkKkllFii. (53) 

It should be observed that the definitions (52) and (53) are special in the sense that 
they depend upon the diagonal form of the angular momentum fluctuation tensor. 
However, it is easily verified that the general formulae read 

and Q = F K - I F .  (54) Q-1 = F - ~ K F - '  

These are valid independent of any special orientation of the intrinsic state and will 
yield the correct moments of inertia upon diagonalisation. 

7. Discussion 

Clearly the most relevant quantity introduced in the present paper is the inertia tensor 
defined at the end of § 6 .  In order to distinguish between the inertia tensor I of a 
classical system of point masses and the present one, we will refer to Q as the quantal 
inertia tensor. This terminology seems appropriate since the eigenvalues of Q are the 
moments of inertia as obtained via angular momentum projection. Also, Q may be 
termed quantal since its definition involves the intrinsic wavefunction, the full quantum 
mechanical Hamiltonian and the quantum form of the total angular momentum 
components. Although there does not seem to be any obvious connection between 
the classical and quantal forms of the inertia tensor it is safe to say that the more 
rigid the system is, the more the two will look alike. Thus, for a quasi rigid molecule, 
in which the nuclei are confined to the immediate vicinity of their equilibrium positions, 
we expect Qkl S I k l .  On the other hand, if there is no preferred particle configuration 
I becomes superfluous whereas the quantal inertia tensor is still able to describe the 
rotational collective features of the system. 

It is clear from the above calculations that of the constituents, F and K, of the 
quantal inertia tensor only one can be brought into diagonal form by a reorientation 
of the original intrinsic state. Therefore, in general, Q will not appear in diagonal 
form. There are, however, situations in which simplifications arise. These occur when 
the intrinsic state is invariant under the symmetry group of the rigid rotor in the sense 
that 

g(r ,  e k ) X ( x )  = r k X ( x )  ( 5 5 )  

where rk = *l. This implies that both F and K are diagonal and that the moments 
of inertia are given by the formula 

I k  = (Ji  )'/([H-E(O)IJZ >-  (56)  
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This is a generalisation of the Peierls-Yoccoz (1957) result for axially symmetric 
systems. In the asymmetric case a Peierls-Yoccoz-type expression is obtained for 
each spatial direction. If the intrinsic state has an exact or near DZ symmetry, i.e. if 
(55) is satisfied exactly or approximately, contributions from rotations near 92 (T, e k )  

should be taken into account while evaluating the overlap and Hamiltonian matrices. 
These give rise to energy shifts of the same nature as the odd-even shifts studied by 
Verhaar (1963) in the axially symmetric case. The explicit derivation of these terms 
are reserved for future publications. 

We have here considered angular momentum projection from a fixed intrinsic 
state. This means we have not taken into account the interaction between rotational 
and other collective degrees of freedom. For molecules this implies neglecting rota- 
tion-vibration coupling, whereas in the nuclear case this situation is equivalent to the 
Davydov and Filippov (1958) approximation. However, it seems perfectly possible 
to build a theory including the interaction between overall rotations and, say, molecular 
vibrations or nuclear surface oscillations if the latter are described using a GC type of 
approach. 

From a computational point of view the present procedure can be looked upon 
as a step in what is sometimes referred to as a double variation method. Indeed, if 
initially a set of parameters (linear, nonlinear, GC, . . . ) in ~ ( x )  have been optimised, 
these will no longer be optimal after the angular momentum projection is performed. 
One can hence start a second cycle of calculations by readjusting the intrinsic 
parameters, keeping the angular momentum superposition coefficients constant. In 
this way one alternately treats the internal dynamics and the collective rotations of 
the system. A consensus between these two types of motion is reached if the above 
cycle is carried through to self -consistency. Approximate angular momentum projec- 
tion economises this scheme since the rotational part of the problem can be performed 
at the mere cost of evaluating the quantal moment of inertia tensor. In fact, one can 
say that the combination of self-consistent field type calculations with the present 
scheme seems especially suited to produce high quality wavefunctions. 

Finally, we consider the possible didactical merits of the projection technique. We 
believe this to be of some importance because the classical way to arrive at comparable 
results, i.e. by using frame transformations, leads to considerable complications and 
sources of confusion. These are due to the fact that a separation of the Hamiltonian 
into a rigid rotor, an internal part and coupling terms necessitates a definition of the 
rotating frame and internal coordinates in terms of particle coordinates. If a choice 
has been made, the separation can be achieved only by explicitly transforming the 
operators in H to the internal frame. This involves generalised coordinate transforma- 
tions which are to be treated carefully upon quantisation, and inevitably leads to the 
introduction of body-fixed angular momentum components. The latter invariably 
cause confusion when first encountered because of their anomalous commutation 
relations (for a review see Herold and Ruder 1979, Herold et a1 1980). A historical 
example of these problems is to be found in the molecular physics literature concerned 
with vibration-rotation Hamiltonians on the basis of the Eckart frame (for a review 
see Sutcliffe 1980). The present approach using the projection formalism is free of 
the above drawbacks. Indeed, due to the use of representation theory our methods 
are strictly algebraic in nature, in contrast to frame transformation theory which 
requires sophisticated operator techniques and careful consideration of quantisation 
rules. The technical prerequisites needed to derive the results of this paper are limited 
to properties of the rotation group and its irreducible representations. Although it 
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remains a question of taste which procedure to use for teaching purposes, we believe 
the projection approach to have some didactical advantages. 

8. Conclusions 

We have presented an approximate angular momentum projection technique for 
many-body systems with an intrinsic asymmetric deformation. Two steps in the 
derivation of the results were of crucial importance. The first was the introduction 
of a new parametrisation of the rotation group. The second involved the use of 
symmetric orthonormalisation in order to permit a physical interpretation of the 
rotational secular equations. We were then able to conclude that, at the lowest level 
of approximation, the angular momentum projection technique yields a rigid rotor 
spectrum characterised by quantum mechanically defined moments of inertia. 
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Appendix 

The analytical evaluation of the integrals over the parameter domain - ~ / 2  s E s 
+ ~ 1 2 ,  0 s 8 s T and - T 6 S s + T does not present any problems if the asymptotic 
expansions (38) are used and the extensions of the E and 8 ranges are made. One can 
always factorise the three-dimensional integrals into two-dimensional ones involving 
8 and S and one-dimensional E integrations. The latter are trivial and involve use of 
the following results: 

+OD I-, dx exp(-cx2+ibx) = 

+m 

dx exp(-cx2+ibx)x = i  

1 b2 
dx exp( - cx2 + ibx)x2 = 

The remaining integrations over 6 and S can be performed exactly if one starts with 
the S integrals and takes into account the definition of the Bessel functions of imaginary 
argument (Abramowitz and Stegun 1965): 

I,,, ( z )  = I d@ e' 'Os cos m@. 
T o  

In the present case the argument z turns out to be proportional to 8'. The resulting 
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8 integrals reduce to expressions of the form (Gradshteyn and Ryzhik 1965) 

JOm dz exp[-zt(t'-- 1)-'/'11~(z)z~ = r (m + n  + l)(t'- 1)(n+1)/2P;m(f) 

where the P,"(f)  are the associated Legendre polynomials. The calculation to lowest 
order involves indices m and n which do not exceed 2 and are therefore of a simple 
analytical form: 

P : ( f )  = 1 

P?(t) = f ,  

& ( f )  =$(3f2-  l), P;'(f)=;t(f2-1), P i 2  ( f )  = $(t'- 1). 

P; ' ( t )  = $( f ' -  l y ,  

We left out a common constant in such a way that the zeroth-order contribution to 
A i K  equals one. 

References 

Abramowitz M and Stegun I A 1965 Handbook of Mathematical Functions (New York: Dover) p 375 
Bohr M and Mottelson B R 1975 Nuclear Structure vol I1 (Reading, Mass: Benjamin) 
Born M and Oppenheimer J R 1927 Ann. Phys., Lpz 84 457 
Brink D M and Weiguny A 1968 Nucl. Phys. A 120 59 
Casimir H B G 1931 Rotation of a Rigid Body in Quantum Mechanics (Groningen, Netherlands: Walters) 

Davydov A S and Filippov G F 1958 Nucl. Phys. 8 237 
Eckart C 1935 Phys. Rev. 47 552 
Gradshteyn I S and Ryzhik I M 1965 Table of Integrals, Series and Products (New York: Academic) p 713 
Griffin J J 1957 Phys. Rev. 108 328 
Griffin J J and Wheeler J A 1957 Phys. Rev. 108 311 
Herold H 1979 J. Phys. G: Nucl. Phys. 5 351 
Herold H, Reinecke M and Ruder H 1979 J. Phys. G: Nucl. Phys. 5 907 
Herold H and Ruder H 1979 J. Phys. G: Nucl. Phys. 5 341 
Jdrgensen F 1978 Znt. J. Quantum Chem. 14 55 
Kelemen A and Dreizler R M 1976 Z. Phys. A 278 269 
Kerman A K and Onishi N 1977 Nucl. Phys. A 281 373 
Landau L and Lifshitz E 1965 Quantum Mechanics (London: Pergamon) p 387 
Lathouwers L 1978 Phys. Rev. A 18 2150 
- 1980a J. Phys. A :  Math. Gen. 13 2287 
- 1980b Quantum Dynamics of Molecules (New York: Plenum) p 221 
Lathouwers L and Van Leuven P 1982 Ado. Chem. Phys. 49 115 
Louck J D and Galbraith H W 1976 Rev. Mod. Phys. 48 69 
Lowdin P 0 1970 Adv.  Quantum Chem. 5 185 (New York: Academic) 
Messiah A 1960 MLcanique Quantique (Paris: Dunod) p 918 
Peierls R E and Yoccoz J 1957 Proc. Phys. Soc. A 70 381 
Sutcliffe B 1980 Quantum Dynamics of Molecules (New York: Plenum) p 1 
Verhaar B 1963 Nucl. Phys. 45 129 

Villars F 1966 Rendiciconti della Schuola Internazionale E Fermi XXXVI 14 (New York: Academic) 
Villars F and Rogerson N 1971 Ann. Phys., N Y  63 443 

P 13 

- 1964 Nucl. Phys. 54 641 


